设为首页 加入收藏 联系我们
 
  联系方式
电话:0755-27922526
传真:0755-27922231
公司邮箱:kv@szkv.com.cn
  友情链接
  最新资讯
News 新闻 您的位置:首页>>新闻
 
视频:贴片三级管的工作原理
【发布时间】2013/11/19【来源】longxing 【浏览次数】6496 【打印】 【关闭
【字体大小】 【大】 【中】 【小】 【保护视力色】 杏仁黄 秋叶褐 胭脂红 芥末绿 天蓝 雪青 灰 默认色
半导体三极管也称为晶体三极管,可以说它是电子电路中最重要的器件。它最主要的功能是电流 放大和开关作用。 三极管顾名思义具有三个电极。二极管是由一个PN结构成的,而三极管由两个PN结构成,共用的一个电极成为三极管的基极(用字母b表示)。其他的两个电极成为集电极(用字母c表示)和发射极(用字母e表示)。由于不同的组合方式,形成了一种是NPN型的三极管,另一种是PNP型的三极管。
 
三极管的种类很多,并且不同型号各有不同的用途。三极管大都是塑料封装或金属封装,常见三极管的外观如图,大的很大,小的很小。三极管的电路符号有两种:有一个箭头的电极是发射极,箭头朝外的是NPN型三极管,而箭头朝内的是PNP型。实际上箭头所指的方向是电流的方向。
 
贴片三级管结构与操作原理

贴片三极管的基本结构是两个反向连结的pn接面,可有pnp和npn两种组合。三个接出来的端点依序称为射极(emitter, E)、基极(base, B)和集极(collector, C),名称来源和它们在三极管操作时的功能有关。图中也显示出npn与pnp三极管的电路符号,射极特别被标出,箭号所指的极为n型半导体,和二极管的符号一致。在没接外加偏压时,两个pn接面都会形成耗尽区,将中性的p型区和n型区隔开。

贴片三极管的电特性和两个pn接面的偏压有关,工作区间也依偏压方式来分类,这里我们先讨论最常用的所谓”正向活性区”(forward active),在此区EB极间的pn接面维持在正向偏压,而BC极间的pn接面则在反向偏压,通常用作放大器的三极管都以此方式偏压。图2(a)为一pnp三极管在此偏压区的示意图。 EB接面的耗散区由于在正向偏压会变窄,载体看到的位障变小,射极的电洞会注入到基极,基极的电子也会注入到射极;而BC接面的耗尽区则会变宽,载体看到的位障变大,故本身是不导通的。图2(b)画的是没外加偏压,和偏压在正向活性区两种情况下,电洞和电子的电位能的分布图。三极管和两个反向相接的pn二极管有什么差别呢?其间最大的不同部分就在于三极管的两个接面相当接近。以上述之偏压在正向活性区之pnp三极管为例,射极的电洞注入基极的n型中性区,马上被多数载体电子包围遮蔽,然后朝集电极方向扩散,同时也被电子复合。当没有被复合的电洞到达BC接面的耗尽区时,会被此区内的电场加速扫入集电极,电洞在集电极中为多数载体,很快藉由漂移电流到达连结外部的欧姆接点,形成集电极电流IC。 IC的大小和BC间反向偏压的大小关系不大。基极外部仅需提供与注入电洞复合部分的电子流IBrec,与由基极注入射极的电子流InB? E(这部分是三极管作用不需要的部分)。


一般贴片三极管设计时,射极的掺杂浓度较基极的高许多,如此由射极注入基极的射极主要载体电洞(也就是基极的少数载体)IpE? B电流会比由基极注入射极 的载体电子电流InB? E大很多,三极管的效益比较高。图3(b)和(c)个别画出电洞和电子的电位能分布及载体注入的情况。同时如果基极中性区的宽度WB愈窄,电洞通过基极的时间愈短,被多数载体电子复合的机率愈低,到达集电极的有效电洞流IpE? C愈大,基极必须提供的复合电子流也降低,三极管的效益也就愈高。 集电极的掺杂通常最低,如此可增大CB极的崩溃电压,并减小BC间反向偏压的pn接面的反向饱和电流,这里我们忽略这个反向饱和电流。


贴片三极管的特性曲线

1、输入特性

图2 (b)是三极管的输入特性曲线,它表示Ib随Ube的变化关系,其特点是:1)当Uce在0-2伏范围内,曲线位置和形状与Uce有关,但当Uce高于2伏后,曲线Uce基本无关通常输入特性由两条曲线(Ⅰ和Ⅱ)表示即可。
2)当Ube<UbeR时,Ib≈O称(0~UbeR)的区段为“死区”当Ube>UbeR时,Ib随Ube增加而增加,放大时,三极管工作在较直线的区段。
3)三极管输入电阻,定义为:
rbe=(△Ube/△Ib)Q点,其估算公式为:
rbe=rb+(β+1)(26毫伏/Ie毫伏)
rb为三极管的基区电阻,对低频小功率管,rb约为300欧。

2、输出特性

输出特性表示Ic随Uce的变化关系(以Ib为参数)从图9(C)所示的输出特性可见,它分为三个区域:截止区、放大区和饱和区。
截止区当Ube<0时,则Ib≈0,发射区没有电子注入基区,但由于分子的热运动,集电集仍有小量电流通过,即Ic=Iceo称为穿透电流,常温时Iceo约为几微安,锗管约为几十微安至几百微安,它与集电极反向电流Icbo的关系是:
Icbo=(1+β)Icbo
常温时硅管的Icbo小于1微安,锗管的Icbo约为10微安,对于锗管,温度每升高12℃,Icbo数值增加一倍,而对于硅管温度每升高8℃, Icbo数值增大一倍,虽然硅管的Icbo随温度变化更剧烈,但由于锗管的Icbo值本身比硅管大,所以锗管仍然受温度影响较严重的管,放大区,当晶体三极管发射结处于正偏而集电结于反偏工作时,Ic随Ib近似作线性变化,放大区是三极管工作在放大状态的区域。
饱和区当发射结和集电结均处于正偏状态时,Ic基本上不随Ib而变化,失去了放大功能。根据三极管发射结和集电结偏置情况,可能判别其工作状态。

 

三极管的主要参数


1、直流参数
(1)集电极一基极反向饱和电流Icbo,发射极开路(Ie=0)时,基极和集电极之间加上规定的反向电压Vcb时的集电极反向电流,它只与温度有关,在一定温度下是个常数,所以称为集电极一基极的反向饱和电流。良好的三极管,Icbo很小,小功率锗管的Icbo约为1~10微安,大功率锗管的Icbo可达数毫安培,而硅管的Icbo则非常小,是毫微安级。
(2)集电极一发射极反向电流Iceo(穿透电流)基极开路(Ib=0)时,集电极和发射极之间加上规定反向电压Vce时的集电极电流。 Iceo大约是Icbo的β倍即Iceo=(1+β)Icbo o Icbo和Iceo受温度影响极大,它们是衡量管子热稳定性的重要参数,其值越小,性能越稳定,小功率锗管的Iceo比硅管大。
(3)发射极---基极反向电流Iebo集电极开路时,在发射极与基极之间加上规定的反向电压时发射极的电流,它实际上是发射结的反向饱和电流。
(4)直流电流放大系数β1(或hEF)这是指共发射接法,没有交流信号输入时,集电极输出的直流电流与基极输入的直流电流的比值,即:

 

三极管的作用

晶体三极管,是最常用的基本元器件之一,晶体三极管的作用主要是电流放大,他是电子电路的核心元件,现在的大规模集成电路的基本组成部分也就是晶体三极管。
三极管基本机构是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种, 从三个区引出相应的电极,分别为基极b发射极e和集电极c。发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。

三极管是一种控制元件,三极管的作用非常的大,可以说没有三极管的发明就没有现代信息社会的如此多样化,电子管是他的前身,但是电子管体积大耗电量巨大,现在已经被淘汰。三极管主要用来控制电流的大小,以共发射极接法为例(信号从基极输入,从集电极输出,发射极接地),当基极电压UB有一个微小的变化时,基极电流IB也会随之有一小的变化,受基极电流IB的控制,集电极电流IC会有一个很大的变化,基极电流IB越大,集电极电流IC也越大,反之,基极电流越小,集电极电流也越小,即基极电流控制集电极电流的变化。但是集电极电流的变化比基极电流的变化大得多,这就是三极管的电流放大作用。

刚才说了电流放大是晶体三极管的作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。根据三极管的作用我们分析它可以把微弱的电信号变成一定强度的信号,当然这种转换仍然遵循能量守恒,它只是把电源的能量转换成信号的能量罢了。三极管有一个重要参数就是电流放大系数β。当三极管的基极上加一个微小的电流时,在集电极上可以得到一个是注入电流β倍的电流,即集电极电流。集电极电流随基极电流的变化而变化,并且基极电流很小的变化可以引起集电极电流很大的变化,这就是三极管的放大作用。三极管的作用还有电子开关,配合其它元件还可以构成振荡器,此外三极管还有稳压的作用。
β1=Ic/Ib

贴片电容电阻  |  公司简介 |   产品资讯  |  资料下载  |  人力资源 |   联系我们

Powered CopyRight © 2011 深圳新科微实业 版权所有 粤ICP备06005942号